medical_balloon/Dimensional_Inspection/Histogram_0722_save.py

109 lines
4.0 KiB
Python
Raw Permalink Normal View History

2024-07-30 16:18:26 +08:00
import cv2
import matplotlib.pyplot as plt
import os
def plot_histogram_and_draw_lines(image_path, column_indices, y_range, results, image_index):
# 讀取圖像
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
# 檢查圖像是否成功讀取
if image is None:
print(f"Error: Unable to read the image '{image_path}'.")
return
# 創建彩色圖像以便畫線
image_color = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
for column_index in column_indices:
# 檢查 column_index 是否在圖像範圍內
if column_index >= image.shape[1]:
continue
# 檢查 y_range 是否在圖像範圍內
if max(y_range) >= image.shape[0]:
continue
# 選擇特定的列和 y 坐標範圍
column_data = image[y_range, column_index]
# 反轉 y 坐標範圍
y_coordinates_reversed = list(y_range)[::-1]
# 查找從灰度值 250 開始並遵循規則的最高點
start_index = next((i for i, value in enumerate(column_data) if value <= 250), None)
if start_index is None:
continue
start_y_coord = y_coordinates_reversed[start_index]
decreasing = True
highest_point = None
potential_highest = None
for i in range(start_index, len(column_data) - 40):
current_value = column_data[i]
next_values = column_data[i + 1:i + 5]
if decreasing:
if all(next_value > current_value for next_value in next_values):
decreasing = False
potential_highest = (y_coordinates_reversed[i + 3], column_data[i + 3])
else:
if all(next_value > potential_highest[1] for next_value in next_values):
potential_highest = (y_coordinates_reversed[i + 2], column_data[i + 2])
elif all(next_value < current_value for next_value in next_values):
highest_point = potential_highest
break
if highest_point:
highest_y_coord, highest_grayscale_value = highest_point
# 計算Y坐標的差值
y_difference = start_y_coord - highest_y_coord
# 計算Y坐標差值乘以2.4/1000的結果
result = y_difference * 2.4 / 1000
# 在圖像上畫線,從起點畫到最高點
cv2.line(image_color, (column_index, image.shape[0] - start_y_coord),
(column_index, image.shape[0] - highest_y_coord), (0, 0, 255), 1)
# 保存結果值和圖號到列表
results.append((image_index, result))
# 顯示並保存帶有畫線的圖像
plt.imshow(cv2.cvtColor(image_color, cv2.COLOR_BGR2RGB).transpose(1, 0, 2)) # 轉置圖像
plt.title('Image with lines')
plt.show()
# 獲取輸出圖像的文件名和路徑
base_filename = os.path.splitext(os.path.basename(image_path))[0]
output_filename = f'{base_filename}.png'
output_path = os.path.join(os.path.dirname(image_path), output_filename)
cv2.imwrite(output_path, image_color)
def process_folder(folder_path, column_indices, y_range):
all_results = []
image_index = 0
for filename in os.listdir(folder_path):
if filename.endswith(('.bmp', '.png', '.jpg', '.jpeg')):
image_path = os.path.join(folder_path, filename)
plot_histogram_and_draw_lines(image_path, column_indices, y_range, all_results, image_index)
image_index += 1
# 打印所有結果值每10個空一行
for i, (image_index, result) in enumerate(all_results, start=1):
print(f'Image {image_index + 1}: Result: {result:.4f}')
if i % 10 == 0:
print() # 插入空行
if __name__ == '__main__':
folder_path = r"D:\Code\Project\Medeologix\Python\Size\TIS_test\joe\1092"
x_range = 5472
num_segments = 10
column_indices = [x * x_range // num_segments for x in range(num_segments)]
y_range_partial = range(0, 3648) # 嘗試不同的範圍
process_folder(folder_path, column_indices, y_range_partial)