medical_balloon/Defect_Detection/img_2/備份.txt
leo890808 a1fb25c89f UP
2024-07-30 16:18:26 +08:00

367 lines
14 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
from PyQt5.QtGui import QPixmap, QImage
from PyQt5.QtWidgets import QWidget, QFileDialog,QMainWindow, QLabel, QSizePolicy, QApplication, QAction, QHBoxLayout
from PyQt5.QtCore import *
from PyQt5 import QtCore, QtGui, QtWidgets
import sys
import traceback
import ctypes as C
import numpy as np
import cv2
import os
from test_0415_ui import Ui_MainWindow
from pyueye import ueye
import numpy as np
import cv2
# 串口通信
import serial
import time
import threading
import torch
from Class.Camera import Camera_class
from Class.Motor import Motor_class
from Class.Pan import Pan_class
from Class.Yolo import yolo_class
class img_yolo(QtCore.QThread):
sinOut = pyqtSignal(str) # 聲明一個帶字串參數的信號
def __init__(self,yolo_model,parent=None):
super().__init__(parent)
self.yolo = yolo_model
def normalize_image(self, img):
if img is not None:
normalized_image = cv2.normalize(img, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX)
return normalized_image
return None
def run(self):
print('run')
self.img_list = []
self.filename_list = []
for filename in os.listdir(r"./image_folder"):
if filename.endswith('.jpg') or filename.endswith('.bmp'):
img = cv2.imread('image_folder' + "/" + filename)
self.img_list.append(img)
self.filename_list.append(filename)
# self.img_test(img, filename)
print(f'img讀取完成')
for i in range(0,len(self.filename_list)):
img = self.img_list[i]
file_name = self.filename_list[i]
t1 = time.time()
results = self.yolo.YoloDetect(img)
t2 = time.time()
print(f'推論時間 = {t2 - t1}')
# print(results)
print(f'{file_name}')
# 檢查是否有預測結果
if results.pred[0] is None or len(results.pred[0]) == 0:
continue
# 獲取預測的信心值和類別
conf = results.pred[0][0, 4] # 取最高信心度
predicted_classes = results.names[int(results.pred[0][0, -1])]
# 獲取 bounding box 的座標
box = results.pred[0][0, :4].cpu().numpy().astype(int)
# 提取ROI (Region of Interest)
roi = img[box[1]:box[3], box[0]:box[2]]
# 正規化ROI圖像
normalized_roi = self.normalize_image(roi)
# 將正規化的ROI轉換為灰度圖像
gray_roi = cv2.cvtColor(normalized_roi, cv2.COLOR_BGR2GRAY)
# 創建CLAHE對象
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(3, 3))
# 對灰度圖像應用CLAHE
clahe_image = clahe.apply(gray_roi)
# # 二值化處理
# _, binary_image = cv2.threshold(sharpened_image, 30, 255, cv2.THRESH_BINARY)
# 形態學膨脹
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (8, 8)) #用這個
# dilated_image = cv2.dilate(binary_image, kernel, iterations=2)
# closed_image = cv2.morphologyEx(binary_image, cv2.MORPH_CLOSE, kernel) #用這個
# opened_image = cv2.morphologyEx(binary_image, cv2.MORPH_OPEN, kernel)
# 將圖像轉換為灰度格式
# gray_image = cv2.cvtColor(closed_image, cv2.COLOR_BGR2GRAY)
# 找到輪廓
# contours, _ = cv2.findContours(closed_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 取得原圖檔名稱
base_name, ext = os.path.splitext(file_name)
# 另存繪製後的ROI檔名加上 '_2'
new_file_name = f'{base_name}_2{ext}'
print(f'Saving {new_file_name}')
cv2.imwrite(f'img_2/{new_file_name}', clahe_image)
# # 獲取最外圍輪廓
# if len(contours) > 0:
# # 擬合最外圍輪廓為橢圓
# ellipse = cv2.fitEllipse(contours[0])
#
# # 在原圖上繪製橢圓
# contour_image = roi.copy()
# cv2.ellipse(contour_image, ellipse, (0, 255, 0), 1) # 使用綠色線條繪製橢圓
#
# # 取得原圖檔名稱
# base_name, ext = os.path.splitext(file_name)
#
# # 另存繪製後的ROI檔名加上 '_2'
# new_file_name = f'{base_name}_2{ext}'
# print(f'Saving {new_file_name}')
# cv2.imwrite(f'img_2/{new_file_name}', sharpened_image)
#
# # 如果信心值超過0.6,則保存圖片
# if conf > 0.6:
# resized_frame_high_conf = cv2.resize(results.render()[0], (1280, 1280))
# print(f'Saving {file_name}')
# cv2.imwrite(f'img_2/{file_name}', resized_frame_high_conf)
# else:
# print("No contours found.")
# # 如果信心值超過0.6,則保存圖片
# if conf > 0.6:
# # 獲取 bounding box 的座標
# box = results.pred[0][0, :4].cpu().numpy().astype(int)
#
# # 保留原本的推論結果,另存原圖像
# print(f'Saving {file_name}')
# cv2.imwrite(f'img_2/{file_name}', img)
#
# # 繪製 bounding box 在原圖上
# cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2) # 使用綠色線條繪製
#
# # 調整圖像大小
# resized_frame = cv2.resize(img, (1280, 1280))
#
# # 取得原圖檔名稱
# base_name, ext = os.path.splitext(file_name)
#
# # 另存繪製後的圖像,檔名加上 '_2'
# new_file_name = f'{base_name}_2{ext}'
# print(f'Saving {new_file_name}')
# cv2.imwrite(f'img_2/{new_file_name}', resized_frame)
#
# else:
# # 保留原本的推論結果,另存原圖像
# resized_frame = cv2.resize(results.render()[0], (1280, 1280))
# print(f'Saving {file_name}')
# cv2.imwrite(f'img_2/{file_name}', resized_frame)
def img_to_view(img):#原圖
img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # QT顏色顯示轉換
Ny, Nx, _ = img.shape
img = QtGui.QImage(img.data, Nx, Ny,Nx*3, QtGui.QImage.Format_RGB888) #須改格式
return img
class MainWindow(QMainWindow,Ui_MainWindow):
def __init__(self, parent=None): #按鍵設定
super(MainWindow, self).__init__(parent)
self.setupUi(self)
# self.view_1.setScaledContents(True)
# self.view_2.setScaledContents(True)
# self.view_3.setScaledContents(True)
# self.view_4.setScaledContents(True)
self.bt_1.clicked.connect(self.bt_1_clicked)
# self.bt_2.clicked.connect(self.bt_2_clicked) # 連接按鈕到新的功能
self.bt_3.clicked.connect(self.bt_3_clicked)
self.cam = Camera_class()
self.cam.start()
self.cam.rawdata.connect(self.show_img)
self.run_flag = True
self.com5 = Motor_class()
self.com5.start()
self.com5.sinOut.connect(self.com5_str)
self.com4 = Pan_class()
self.com4.start()
self.com4.sinOut.connect(self.com4_str)
self.count = 0
self.img_count=0
self.yolo = yolo_class('weight/best.pt')
#self.yolo.start()
# self.img_test_2()
def show_img(self,img):
self.img = img
h,w,_ = self.img.shape
img= img_to_view(img)
self.view_1.setPixmap(QtGui.QPixmap.fromImage(img))
def bt_1_clicked(self):
self.time_2= time.time()
self.com5.start_run()
self.run_flag = True
self.time_1 = time.time()
def com5_str(self,str_1):
if str_1 =='move':
self.count = self.count+1
if self.count< 6:
print(self.count)
if str_1 == 'move':
self.img_count = 0
self.com4.move()
if self.count == 5:
self.run_flag = False
if str_1 =='2':
# self.img_test()
#self.time_1 = time.time()
#print(f's={self.time_1-self.time_2}')
# print('save_img')
self.img_count = self.img_count+1
cv2.imwrite(f'image_folder\\{str(self.count)}_{self.img_count}.jpg',self.img)
#self.time_2= time.time()
def com4_str(self,str_1):
if str_1 =='move_end' and self.run_flag == True:
self.com5.start_run()
if str_1 == 'Motor emergency stop 010':
print('010')
self.run_flag = False
self.count = 0
time_2 = time.time()
print(f'all_time - {time_2 - self.time_1}')
self.bt_3_clicked()
# def bt_3_clicked(self):
# options = QFileDialog.Options()
# options |= QFileDialog.ReadOnly
# filePath, _ = QFileDialog.getOpenFileName(self, "選擇圖片", "", "圖片文件 (*.bmp *.jpg *.png);;所有文件 (*)",
# options=options)
# # print(filePath)
# img = cv2.imread(filePath)
# t1 = time.time()
# results = self.yolo.YoloDetect(img)
# t2=time.time()
# # print(f'推論時間 = {t2-t1}')
# # print(results)
# # 檢查是否有預測結果
# if results.pred[0] is None or len(results.pred[0]) == 0:
# # self.label1.setText("沒有瑕疵物件")
# return
#
# # 獲取預測的類別
# predicted_classes = results.names[int(results.pred[0][0, -1])] # 取最高信心度的類別
# resized_frame = cv2.resize(results.render()[0], (1920, 1280))
# # print(resized_frame)
# img = img_to_view(resized_frame)
# self.view_2.setPixmap(QtGui.QPixmap.fromImage(img))
#
# def img_test(self,img,file_name):
# t1 = time.time()
# results = self.yolo.YoloDetect(img)
# t2 = time.time()
# print(f'推論時間 = {t2 - t1}')
# # print(results)
# print(f'{file_name}')
#
# # 檢查是否有預測結果
# if results.pred[0] is None or len(results.pred[0]) == 0:
# # self.label1.setText("沒有瑕疵物件")
# return
#
# # 獲取預測的類別
# predicted_classes = results.names[int(results.pred[0][0, -1])] # 取最高信心度的類別
# resized_frame = cv2.resize(results.render()[0], (1920, 1280))
# # print(resized_frame)
# # img = img_to_view(resized_frame)
# # self.view_2.setPixmap(QtGui.QPixmap.fromImage(img))
# print(f'{file_name}')
# cv2.imwrite(f'img_2/{file_name}', resized_frame)
def img_test_2(self):
img_list=[]
for filename in os.listdir(r"./image_folder"):
if filename.endswith('.jpg'):
img = cv2.imread('image_folder' + "/" + filename)
img_list.append(img)
# self.img_test(img, filename)
print(f'img讀取完成')
run_list=[]
for img in img_list:
run_list.append(img_yolo( self.yolo,img))
for i in range (0,len(run_list)):
run_list[i].start()
def bt_3_clicked(self):
self.T1 = img_yolo(self.yolo)
self.T1.finished.connect(self.on_yolo_finished) # Connect to finished signal
self.T1.start()
def on_yolo_finished(self):
img_confidence = {} # Dictionary to store confidence values for images
# Load images from img_3 folder
for filename in os.listdir(r"./img_2"):
if filename.endswith('.jpg'):
img_path = os.path.join("./img_2", filename)
img = cv2.imread(img_path)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h, w, _ = img_rgb.shape
qimg = QtGui.QImage(img_rgb.data, w, h, w * 3, QtGui.QImage.Format_RGB888)
# Perform YOLO detection and get confidence value
results = self.yolo.YoloDetect(img)
if results.pred[0] is not None and len(results.pred[0]) > 0:
conf = results.pred[0][0, 4] # Confidence value
else:
conf = 0
img_confidence[filename] = conf
# Sort images by confidence value in descending order
sorted_imgs = sorted(img_confidence.items(), key=lambda x: x[1], reverse=True)
count = 0 # Count the number of displayed images
# Display images in view_2, view_3, and view_4 based on confidence value
for filename, _ in sorted_imgs:
img_path = os.path.join("./img_2", filename)
img = cv2.imread(img_path)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h, w, _ = img_rgb.shape
qimg = QtGui.QImage(img_rgb.data, w, h, w * 3, QtGui.QImage.Format_RGB888)
if not self.view_2.pixmap():
self.view_2.setPixmap(QtGui.QPixmap.fromImage(qimg))
count += 1
elif not self.view_3.pixmap():
self.view_3.setPixmap(QtGui.QPixmap.fromImage(qimg))
count += 1
elif not self.view_4.pixmap():
self.view_4.setPixmap(QtGui.QPixmap.fromImage(qimg))
count += 1
# Break the loop if displayed 3 images
if count == 3:
break
if __name__ == "__main__":
app = QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec_())