medical_balloon/Dimensional_Inspection/size_0613_test.py
leo890808 a1fb25c89f UP
2024-07-30 16:18:26 +08:00

111 lines
4.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import cv2
import numpy as np
class test_main():
def __init__(self):
# 讀取原始影像
self.original_image = cv2.imread(r'D:\Code\Project\Medeologix\Python\Size\01_10fps_0.041ms_0db_1092\01.bmp')
self.test()
def test(self):
# 複製原始影像
img = self.original_image.copy()
o_img_black = img.copy()
o_img_black[:, :, :] = 0 # 將影像填充為黑色
# 將圖片轉換為灰度圖
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 使用 Canny 邊緣檢測
edges = cv2.Canny(gray_image, 250, 250)
# 檢測直線
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=200)
# 建立黑色影像
black_img = gray_image.copy()
black_img[:, :] = 0
# 如果檢測到直線,繪製在黑色影像上
if lines is not None:
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(black_img, (x1, y1), (x2, y2), (255, 255, 0), 2)
# 找出黑色影像中白色點的座標
y_list, x_list = np.where(black_img == 255)
# 繪製紅色的兩條垂直線
cv2.line(o_img_black, (300, 0), (300, len(o_img_black)), (0, 0, 255), 2)
cv2.line(o_img_black, (len(o_img_black[0]) - 300, 0), (len(o_img_black[0]) - 300, len(o_img_black)), (0, 0, 255), 2)
# 像素大小5.5μm
pixel_size_um = 5.5
# 找到 x 座標等於 300 的所有索引
indices_300 = np.where(x_list == 300)[0]
# 從 y_list 中獲取這些索引對應的 y 值
y_values_300 = y_list[indices_300]
# 找出最大和最小的 Y 值
max_y_300 = np.max(y_values_300)
min_y_300 = np.min(y_values_300)
print("For x = 300:")
print("Max Y:", max_y_300, "Min Y:", min_y_300)
# 計算相減結果
diff_300 = max_y_300 - min_y_300
# 將距離從像素轉換為毫米
diameter_300 = diff_300 * pixel_size_um / 1000
print("直徑:{:.3f} mm".format(diameter_300))
# 找到 x 座標等於 o_img_black.shape[1] - 300 的所有索引
indices_other = np.where(x_list == o_img_black.shape[1] - 300)[0]
# 從 y_list 中獲取這些索引對應的 y 值
y_values_other = y_list[indices_other]
# 找出最大和最小的 Y 值
max_y_other = np.max(y_values_other)
min_y_other = np.min(y_values_other)
print("For x =", o_img_black.shape[1] - 300)
print("Max Y:", max_y_other, "Min Y:", min_y_other)
# 計算相減結果
diff_other = max_y_other - min_y_other
# 將距離從像素轉換為毫米
diameter_other = diff_other * pixel_size_um / 1000
print("直徑:{:.3f} mm".format(diameter_other))
# 從 y_list 中獲取這些索引對應的 y 值
intersection_points_300 = [(300, y_list[i]) for i in indices_300]
intersection_points_other = [(o_img_black.shape[1] - 300, y_list[i]) for i in indices_other]
# 合併所有相交的點
intersection_points = intersection_points_300 + intersection_points_other
# 在原圖上標記相交的點並連接紅色垂直線
for point in intersection_points:
cv2.circle(img, point, 10, (0, 255, 0), -1)
# 在垂直相交點之間繪製紅線
for i in range(len(intersection_points_300) - 1):
cv2.line(img, intersection_points_300[i], intersection_points_300[i + 1], (69, 27, 203), 2)
for i in range(len(intersection_points_other) - 1):
cv2.line(img, intersection_points_other[i], intersection_points_other[i + 1], (69, 27, 203), 2)
# 將所有找到的點也標記出來
for i in range(len(x_list)):
point = (x_list[i], y_list[i])
cv2.circle(o_img_black, point, 1, (102, 193, 134), -1)
# 顯示直徑數據在原圖上
cv2.putText(img, "Diameter at 300: {:.3f} mm".format(diameter_300), (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 0), 2)
cv2.putText(img, "Diameter at {}: {:.3f} mm".format(o_img_black.shape[1] - 300, diameter_other), (10, 170), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 0), 2)
# 顯示結果
black_img_resized = cv2.resize(o_img_black, (640, 640))
cv2.imshow('Black Image with Lines', black_img_resized)
original_img_resized = cv2.resize(img, (1280, 1280))
cv2.imshow('Original Image with Diameter', original_img_resized)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == "__main__":
test_main()